Formazione Online in classi virtuali, e-Learning
e altre modalità di erogazione per la tua formazione.

Maggiori informazioni

Machine Learning with TensorFlow on Google Cloud Platform (MLTF)

 

Course Overview

What is machine learning, and what kinds of problems can it solve? What are the five phases of converting a candidate use case to be driven by machine learning, and why is it important that the phases not be skipped? Why are neural networks so popular now? How can you set up a supervised learning problem and find a good, generalizable solution using gradient descent and a thoughtful way of creating datasets?

Chi dovrebbe partecipare

  • Data Engineers and programmers interested in learning how to apply machine learning in practice.
  • Anyone interested in learning how to build and operationalize TensorFlow models.

Certificazioni

Questo corso è parte della seguente certificazione:

Prerequisiti

To get the most out of this course, participants should have:

  • Experience coding in Python
  • Knowledge of basic statistics
  • Knowledge of SQL and cloud computing (helpful)

Obiettivi del Corso

Learn how to write distributed machine learning models that scale in Tensorflow, scale out the training of those models, and offer high-performance predictions. Convert raw data to features in a way that allows ML to learn important characteristics from the data and bring human insight to bear on the problem. Finally, learn how to incorporate the right mix of parameters that yields accurate, generalized models and knowledge of the theory to solve specific types of ML problems. You will experiment with end-to-end ML, starting from building an ML-focused strategy and progressing into model training, optimization, and productionalization with hands-on labs using Google Cloud Platform

This course teaches participants the following skills:

  • Frame a business use case as a machine learning problem
  • Create machine learning datasets that are capable of achieving generalization
  • Implement machine learning models using TensorFlow
  • Understand the impact of gradient descent parameters on accuracy, training speed, sparsity, and generalization
  • Build and operationalize distributed TensorFlow models
  • Represent and transform features

Contenuti del Corso

  • How Google Does Machine Learning
  • Launching into Machine Learning
  • Intro to TensorFlow
  • Feature Engineering
  • The Art and Science of ML
Online Training

Durata 5 Giorni

Prezzo (IVA esclusa)
  • 3.250,- €
Formazione in Aula

Durata 5 Giorni

Prezzo (IVA esclusa)
  • Italia: 3.250,- €

Schedulazione

Inglese
1 ora spostamento del fuso orario
Online Training Questo è un corso FLEX.
Fuso orario: Eastern European Time (EET)
Instructor-led Online Training:   Questo è un corso Online
Questo è un corso FLEX, erogato sia in aula che in remoto, contemporaneamente.
Italia

Per informazioni scrivere a info@flane.it  Richiedi una data

Romania
Bucharest Corso FLEX in lingua Inglese
Fuso orario: Eastern European Time (EET)
Questo è un corso FLEX, erogato sia in aula che in remoto, contemporaneamente.